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Abstract-—Exact transient solutions are obtained for penny-shaped crack growth in an clastic
nraterial. The material is loaded by a general combined tension. in-plane shear, torsion tield and. for
consistency with the crack shape. the field varies axisymmetrically about the crack center axis.
Solution construction is in terms of a general 30 dislocation distribution, and draws on exact results
derived previously for 2D plane crack growth. For generality in attacking more complicated
problems in the future, the solutton method makes no appeal at the outset to axisymmetry, nor to
the tack of geometric characteristic length. The general expression for the 3D displacement solution
vector is presented, and two tmportant cases worked out. One of these—uniform combined load-
ing —is also examined from the viewpoint of fracture mechantes: 1t as found that the relative
importance of any one of the three fracture modes to the fracture energy rate depends on crack
growth rate as well as on the loading itself.

L INTRODUCTION

As the review by Panasyuk er af. (1981) and the work by Fabrikant (1989) demonstrate,
analytical studies for a wide variety of static 3D crack problems have been made. For non-
stutic 3D problems, however, the emphasis has been on approximate, time-harmonic, or
numerical studies of stationary cracks (Achenbach er af., 1982 Martin and Wickham,
1983 Rosukis ef al., 1988 ; McCarthy and Hayes, 1989). Thus, there are relatively few
transient analytical studies of growing 3D cracks.

Nevertheless, several of these are of note: in particular, Willis (1973) has obtained
approximate transient solutions for 3D crack growth when no chuaracteristic length exists
while, even more recently, Erguven (1985) and Brock (1989) derived exact results for a
penny-shaped crick growing at a constant rate in, respectively, a uniform torsion and a
uniform tension feld.

The wim of the present paper is. therefore, a first-step extension of the work by Brock
and Willis: a penny-shaped crack growing at a constant subceritical rate in an unbounded
isotropic clastic material is treated. As Fig. | illustrates in terms of the Cartesian co-
ordinates x = (¥, ¥y, x;3), the crack lies in the x,x,-plane and grows from a point defect at
x = 0. The variable s is time multiplied by the dilatational wave speed. so that ¢ is the
dimensionless ratio of crack speed to dilatational wave speed. The loading in the material
is appropriate for penny-shaped cruack growth: the crack plane is placed in a state of
axisymmetrically-varying combined tension, in-plane shear and torsion. Exact transient
solutions will be obtained. so that some general physical insight will be possible. It is hoped,
morcover, that the exact nature of the solution will suggest methods of treating more general
3D crack problems.

In the next section, the transform solution for a related 3D problem is given and partly
inverted. This is subscquently used to construct solutions lor the penny-shaped crack
problem. It will be noted that the solution process makes no appeals at the outset to either
the lack of a characteristic length in the gecometry or the problem axisymmetry; these
properties will subsequently be invoked when particularly convenient.
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Fig. 1. Geometry of penny-shaped crack growth and combined loading.

2. RELATED 3D PROBLEM

Consider an unbounded, isotropic, linearly elastic material : For s < 0 itis at rest, but
for s > 0 a dislocation distribution u* —u™ = U appears on the finite region A, of the v v,-
planc. Here (u, U) are the displacement and displacement discontinuity (dislocation) vectors,
with Cartesian components (4, U,) (i = 1. 2, 3), while ( +) denotes evaluation on the surface
Xy = 0 4. The distribution U = U(x, s) is for v > 0 continuous and finite in A, , and vanishes
identically outside A, . The governing equations for the problem are, theretore,

u' ' —u =U (la)
in A fors >0,
u=0 (Ib)
for all x when s < 0 and
Viu+(m™ = 1)V(Vu) =mii, m=v,/v, 24)
;ltd = (m*=2)(Vu)l + Vu+uV (2b)

for s > 0 and all x except perhaps A.. Here Vois the gradient operator, (7) denotes s-
differentiation, ¢ and [ are the stress and identity tensors, and (7)) denotes the inner product.
The constants (g, vy, r'3) arc, respectively, the shear modulus and dilatational and rotational
wave speeds. [n addition, u = u(x. s) should be continuous along dilatational and rotational
wavefronts or, correspondingly, should remain finite as |x| — 3¢ for finite s > 0.

To satisfy eqns (1), (2) and the attendant finiteness condition on u, we follow the work
of Brock (1986) on a more general dislocation problem: The uni- and bilateral Laplace
transforms (Sneddon, 1972)

flx) = J, SIx.s)e Mds, () = ij(x) ¢ MY dy, dy, (3a.b)

are applied. Here integration is along the entire Re (x,, x;)-axes and the vector q = (¢,.4..0).
The scalar p can be treated as real; in particular, p > 0 for this problem. The result is the
transform problem
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(& =p b w*+(m* = V) (pq,.pq..d)(pg,ut+pyg-ut+dut) = 0 (da)
(u*)” —(u*) =LU* (4b)

for. respectively. x, # 0 and x, = 0. where |u*| must remain finite as |.x;| — x. Here
a=J(l=¢") b= (m —q) (5

while o denotes x;-differentiation and ¢ = Iqi. Here Re(a.b) 2 0 in the ¢-plane cut along
Im(g) = 0. |Re(¢)| > (1.m). The appearance of the branch cuts on the Re (¢)-axis follows
from the use of the bilateral Laplace transform. and proves to be of some convenience in
manipulating the transform inversions. The wavefront continuity imposed on u. as mani-
fested in the unilateral Laplace transform, can be shown to guarantee the exponentially
small behavior at infinity required for the bilateral transform. ct. Brock (1986). The trans-
form problem is readily solved and. in particular. we have for x, = 0,

2m* s . ) 2’ .
——at = (g E—mhYU*+q,q.EUY , (i=1.2), —— 0% = -DU? {6ua.b)
mp up
where
. T . T s s v
D =44 h+ e L= ; +2h—da, T=m =24 =h"—y¢4". (7
[¢ )

From Sncddon (1972), the inverse of operation (3b) applied to (6b) gives
U2mn)'6,, = —/l[l‘Jfol) " dg, dg, (8)

for xy = 0. We have assumed that U* is analytic along the Im (¢,)-axes, which are the
inversion integration paths in (8). These paths are chosen to avoid the branch cuts of (a. b).
Introduction of the rotation

gx =0, Q=y )

wherer = /(v +x3).Q = (Q1. Q..0)and Q = |Q|. produces integration along the Im (Q,)-
axes, and an exponential term which is independent of Q,. Thus, we can write

(2mn)’é,, = —/t/l"JJ(Un‘.I)L'Q" dQ, dQ. (10)

where integration is now along the entire Im (Q)-axis and the positive Im (Q.,)-axis, and
the subscript ¢ signifies that part of a function which is even in Q.. [n view of (9),

D(g) = D(Q). alg) =a(Q). blg)=b(Q). Elg)= E(Q) (n

so that these functions are automatically even in (Q, @»). Similarly. it can be shown that
(6a) yiclds

(2mn)'d, = ;lp“J‘J'S’}, ¢ dQ, d@. (i=1.2) (12a)

S’\.: = (UI*)I'[(QIZ COS: 0+Q§‘I Sin: (’)E—"':h]—(U.’\.u)quQ:ECOS 20
+[HUL QT =QD+ (=) (U*),Q.Q:]Esin 20 (12b)
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where the subscript o denotes that part of a function which is odd in Q.. As seen in Fig. 1,
{(r.#) are the polar coordinates in the x v,-planc, where ¢ = tan ' (x. x,). Indeed. the
complicated nature of (12b) suggests that (. 0) be used in place of (x,.x:). Itis then easily
shown that (10) remains the same. but that (12) can be repluced by

A

(i2mn)é, = ;ep‘jj[((}*)‘.(fo—m:/’)—(C'.?‘),,Q.Q:EI eV dQ,dQ,  (13a)
(2mn)*61 = pp’ JJ[‘(»',.*)(.(QEE—m%)——(L’,“),,Q|Q;E] ¢V dQ, d@.  (13b)

where now U = (U,. U,. U,). These results are now applied to the penny-shaped crack
problem.

3. TRANSFORM ADAPTATION FOR PENNY-SHAPED CRACK PROBLEM

We choose 4, to be the growing circle r < ¢s shown in Fig. 1, and U to represent the
refative displacement of the two crack surfaces. For subceritical crack speed.

< ('R {!4)

where ¢ < Foais the Rayleigh wave speed non-dimensionalized with respect to ¢y, The
crack problem can now be viewed as the superpaosition of the solution which would exist if
no crack were present, and the solution o the problem considered above. OF course, U
must now be chosen so that it vanishes continuously at r = ¢x, while simultancously
caneclling the tractions imposed over o, by the first solution.

The first solution represents the loading in the unbounded material. As noted at the
outscl. this loading produces an axisymmetrically-varying tension shear torsion fickl on
the crack plane. We here assume that this field can be represented by polynomials in
(r.s). Clearly, the terms in these polynomials can be grouped according to their degree of
homogeneity # {Brock, 1976) so that, by superposition, the traction ficld imposed onx, =0
can be written as combinations of the sets

,
ey =yB,(J), {=-. (154.b)
Y

Here e, s the x-basis vector, g is now in the coordinates (. ¢, x ) and the components of
the vector B, are lincar combinations of powers of & between 0 and n. For present purposes,
it suffices to consider n = 0.

By superposition, a ficld U can be obtained separately for euch given truction set (15a).
Because the problem geometry exhibits no characteristic length, this U will be homogencous
of degree n+ 1 in (r,5) (Achenbach and Brock, 1971 Brock, 1978). Therefore.

U=.\””'~f (=Y AN de, r<es (16)

is an appropriate candidate, where the vector distribution A{7) over the dimensionless,
speed-related parameter 7 is now the quantity sought.

In view of (10) and (13), the double transform ol (16) s required : Application of (3),
changing the integration variables from (x,. x;) to (r.0) and then interchanging the order
of (r.s) integration gives a form in which both these integrations can be performed. The
result 1s
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1 (e n 0 I
ue = 0 e d ———A()dt, k=-.
A T v (k+q, cos 0+¢q,sinf)- t

(17a,b)

The f-integration can be written as — ¢l ¢k, where

[ = ’ do (18
- 0 k+([|C059+q; 5“19 )

For ¢ real. (18) can be performed by use of standard tables (Peirce and Foster. 1957) to
give
2n

I=———. k2q
\,‘/(k."q.)

whereupon, in view of (9). (17a) becomes

(n+1) J‘“ t
Ur=(U*. =2t i~ | —————A(Ddt. k=0. 19
( )I T 7 d N \/(k:—‘Q:)‘ ( ) Q ( )

Upon substitution of (19) and making the imaginary nature of @, explicit, i.e. @, = iu
(1 real), (10) gives

i:ﬂl’l:(i’n = —'[l(ll + |)' j:’ (It)) A |(’) J‘J.\/((‘:[_). Q})" C"{"r dQl d“ df (20)

where A = (A, Ay, A ). integration is now along the positive Re (w)- and entire Im (Q))-
axes, and

Q=Qi-w'. a=JP-Q). b= M =-0] (2la)

I'=J(l+uY), M= Jm+u’), C= /(K +u) (21b)

It is noted in view of (7) that the integrand of (20) exhibits the branch cuts Im(Q ) =0
and, respectively, (1, M) < |[Re(Q))] < €. Neither function has poles in its cut Q-plane,
and both vanish exponentially as |Q ] — =<, Re (Q,) < 0. Therefore, by the Cauchy theorem,

the Q-integration cun be deformed onto contours around the branch cuts on the negative
Re (Q)-axis. The result is

.. i ! I3 (& s e T! ~pwr
mta = p(n+1)! J:, ([’) A |(I)J; (ju 40°bh— J: - ) j-(—g-z-::.—:-)—;dw du dr (22)

where —w replaces @, and now
Q'=w'—t’, a= \,/(u'!—lz). h= \/(w: —AP). (23}

Similar expressions can be obtained from (13) for (d,. ¢ 5,). In the next scction, the inversion
of all these transforms is completed,

4. TRANSFORM INVERSION
By inspection, the inverse unilateral Laplace transform of the p-dependent terms in

(22) 1s

lv (s—wrY' H(s—wr) (24)
n
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where H( ) is the Heaviside function. If we assume that the operations of (u, w. t)-integration
and inversion can be interchanged. then (22) and (24) give

i J NG (Jﬂ *h JL Tz) Y, ded J 5
e Oy = A, [ — 2p : ) -dr. _35 5
wa+1yp o ‘/(k:_vg)J i l C Ldede, T : (25)

for x; = 0. Here L = min (k. 7). the («. w)-integration orders have been interchanged. and
the integration variable change w = /(1 +¢7) made. i.c.

Q=r. a= \,/(vz—l), b= =m), T=m=2". (26)
The function .Y, is defined as

viti-ed) . . du
X, = —JE e - 27
J; [t =V +17)] Tt e (27)

In view of (15b) and Fig. 1, it is more convenient to use the dimensionless variable ¢, and
to climinate the need for the symbol k. Therefore, the integration variable change v = 1/z
is introduced in (25). and it can then be shown that

m’ ¢ P tm " 2\ d-
“(”4_”'!‘7,\1 =r 0 Al(’)\/‘(;.‘.h_ﬁl?z')ri ’ Sa+ A S. ), é E;;’;,'dl (28)

for xy = 0. Now L = max (¢, &) and

AR

1S, = =N, Sy=4f a=J(1-2%), f= J=mzh), N =2-m’: (29)

Wolx) =ch 'x, W, (x)= J (x—w) "W ()de (n=1) (30)
t

and z-integration is along the upper side of the Re (2)-uxis. It should be noted that the
integrations in (30) can, if needed, be performed by standard tables (Peirce and Foster,
1957).

In view of (15a), A(f) must be chosen so that (28) gives a polynomial homogencous of
degree nin (r,s) when r < ¢s($ < ¢). An analogous requirement arises in the treatment of
2D plane crack extension under polynomial-form loading (Brock, 1978). Indeed the 2D
results suggest the trial form

n

A =Ta, = (31
Z \/(l,-_’-)_nkl

where the vectors a, = (a,,.aq. a,3) arc arbitrary constants and summation is over i from 0

to n. [t is noted that the number of unknown cocflicients, 3{n+ 1), is equal to the number

of cocflicients nceded to completely define the vector polynomial B,. Equation (16) thus

bccomes

U:.&"”Za,J ({—5)114-1;/ - r < cs. (32)

((‘: _’l)lr:?d"

Despite the singular upper limit, (32) can readily be evaluated to give a finite result, by
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interpreting it as a finite part integral (Hadamard. 1908). For example. when n = 0 we can

write
S N
U= Sa.,(-) - j > e de (33)
" o/ Jler—=t)

The first integral is written as the real part of an integration along the upper side of the
entire positive Re (1)-axis. The Cauchy theorem is then used to change the path onto the
positive Im (f)-axis. where the integration is casily shown to give — 1/c. Standard tables can
be used to evaluate the integration trom 0 to &. The result is

ST r<os. 34)

Substitution of (31) into (28) and interchange of the (7. 2)-integrations yields two (-
integrations which can be performed by use of the Cauchy theorem. Indeed. the two
integrations give the sume result. so that (28) becomes

M tm "1
nm- =

- ”V,' . S + Ay )\ll ( )(. - ) i- 15

7 r 10, B . mis C) Al AR

cptn+ 0 < (f " J; ' )" ( )

for v, = (., where
2(,_'{_') ) . A‘.!: . n
¢y = “'2~ €, = - 2,} I ¢ I(l = l)' ('m(-\‘- ") = "‘.: __‘.3)11 h (3(‘)

By a similiur process, we obtain

2o’ P ~'1' . N A
('[l(”+ l)!(’\r =1 L“n": . Han + L‘lf ] : 'm(-v()‘--
3 - -
+f'2a,,z-,f [7;\1‘,, (‘) +U.,Q, (;)]Gm(:.e) dz (37
N 5 Y

for x, = 1), where oy, follows by replacing (77,. T with their negatives, and «, with ¢, In
Ry}

S i1

T,=U,=42. Uy=202f+Ty. BTy=mz"=2N (38)

while
Q) = =1 Q)= j (x—u)" "Q.uydu(n= 1. 39)
1

As with W, the integrations in (39) can casily be performed if needed.

The tractions generitted on xy = 0 by U 3 0 defined over the zone r < es will travel as
dilatational and rotational waves. Because these waves exist in, respectively, the regions
r<s(é < yand r<s/m(E < 1/m), they can immediately be identified as the - and B-
subscripted terms in (35) and (37).

Although the forms of these equations suggest otherwise, two examples now considered
will demonstrate that (35) and (37) do indeed behave as polynomials of degree i in (. 5)
when r < ¢, thus allowing the problem solutions to be completed.

SAS 28:4-71
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5. VARYING PURE TENSION

If we consider the unbounded material subjected to pure tension. then B, = (0.0, B,1)
in (13a). whereupon (37) and its ¢,-counterpart show that

(a,.ay) = 0. (40)

Thatis. U = (0.0. {"y) in (32). To illustrate how to obtain the «,; for U';. we consider the
case n = 2. Then (15a) gives the general form

0 =5 (hy+b,i+bh:37) = bys +birs+ b (41)

for x; = 0. r < ¢s. where the b, are specified positive constants. For r < ¢s.n = 2. it can be
shown that (35) can be written as

J s . g z 3 .
—— O = Xu,;c, Im AY. »;) G.{z.o)d-+ __rr‘ (m-— Dag.rs 42)
6u 0 S 2
where ([5b) has been used,
N* Jea s L
A=4348+ R B=Jmz==1). A= (-1 (43)
s

and integration is along the upper (Im (2) = 04 ) side of the z-axis. In (42), integrand terms
involving (4, 8) have branch cuts along Im(2) = 0. & < [Re(2)] < (1. 1/m), respectively.
The singularity at = = ¢ in ', lies, therclore, on the integrand branch cuts. However, (30)
shows that

oo ()52 [ ()T e

for Im (2) = 0+, |Re(2)] < ¢, thus allowing a pole to exist at = = 0 for the ¢, -term; the
additional term in (42) corrects for the residue of this pole. The integrand has no other
poles or branch cuts in the first quadrant of the z-plane, and behaves no worse than O(z %)
when |z] = . The Cauchy theorem can be used, therefore, to transform the integration
path in (42) onto the positive Im (2)-axis, where (30) becomes

()= = L (] [0 o[
(] ). =m0

Then, taking the imaginary part of the integral in view of (15b) and (36), (43) and (45) gives

1

), Oy =tan ' J(xi=1) (44

m? p © RN L 3,
= A @i ey de Dty rs 46
37 4211,‘(,.[, (t"+c')’“( et =) det T = Dagrs (46)
where
I e . -
Ri=4b = = Q+mc’)'. ay = J(1+¢7). by =1 +mc7) (47)
a,

and it should be noted that the e-integrations can be expressed in terms of complete elliptic
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integrals (Gradshteyn and Ryzhik. 1980). For purposes of analysis and computation,
however. the forms given in (46) are actually more effictent.

Equation (46) is clearly a polynomial homogeneous of degree 2 in (r.s). Thus, setting
it equal to the negative of (41) gives a set of three linear equations for the unknown
coefticients (ay. @y 1. @22 in terms of the specified constants (by. b b2). The crack problem
1s. therefore. essentially solved.

We must consider a case in which all three traction components must be removed.

6. UNIFORM TENSION, SHEAR AND TORSION

For the case of uniform tension. shear and torsion. n = 0 and (15a) can be written as
e_x'd=Bn=b (48)

where the components (h,. 5, b;) of b are specified positive constants. For n = 0 it is easily
shown in view of (36) that (35) and (37) give for x, =0, r < cs.

- :z iz
—2ucdy, lmJ. A‘P.,(,) ( ‘s (49a)
0 ¢/ (=)

) : : iz
—Z;u'u(,,lmj‘ [A.,.‘I‘.,(,)+AQQ<.<.,>] A (49h)
oL S < sz =)

while a, follows from (49b) by replacing a, with ay, and A with — A, Here

e,

HL G,

s 1 ) s | '
A =444+ 2m "B+ B(ZN—HI":' LA =4+ B(Z:V—m':') (50)

and the integrand branch cuts are the same as they were for (42), but it is noted that no
poles exist in the cut z-plane for this case. The Cauchy theorem can yet again be used to
chiange the mtegration paths onto the positive Im (z)-axis, where (30) and (39) reduce to

TG YN 111 RS PR )

(51)

i

In view of (51), it can then be shown that (49) and their o y,-counterpart give the constants

([)l (D:
Gy = —pic - sdoy. (03 00) = —pey " (do . o) (52)
m 2m
for vy = 0.r < ¢s. where
O J.' B <0. R 4 2mieth ! (44 3mr?) (53)
= R . s=4a,=2mr°h,— - Im-r- Rk
[} l"(l"'*'(")' - ! f /)I

and Ry is given by (47). As with (46). the integrals ®, can be expressed in terms of complete
clliptic integrals. although their present forms are actually more convenient. Sctting (52)
equal to the negative of (48) yields
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2m

Uy = -~ ""’h!- (“uf.(lmt) == g;:(":’b: (hr-hn) (54)

which completes the solution process. With the validity of (31) and the method for deter-
mining the coeflicients a, demonstrated. we now present general results for the displacement
tield generated in x, > 0 by the traction removal process.

7. GENERAL EXPRESSIONS FOR TRACTION REMOVAL SOLUTION

Returning to the original transform problem assoctated with (4). it is easily shown that
for x; > 0.

. T - . .
Qnruk =g, (?_w*- - L"?‘) ¢ P (P U = 2qe* + 2q U e T (i = 1L2) (55a)
7

s , . T
2o =(TUF=2aw*)e "+ (Eer ¥+ fvm*) g rh (35b)
o =g UF+q,UF (55¢)

where (a, b, 1) are given by (5) and (7). As before, itis convenient to employ the coordinates
(r. 8. x3). Therefore, we apply the inverse of (3b). and mtroduce both the new coordinates
and the rotation (9). The resalt is

(2mr)’a = ntp’ J‘J JYTIM e MR M e M)A, dE, (56)

where now u = (i, .. 1), and the (7, 0, x J-components of the M-vectors are

¥ ¥ '[‘ .

M, =2000*), 200U, -, , (on, (57a)
1.

. T
M = =2Q.Q:(UN, +203(UN+Q: (U, (57b)
M,y = =200 (U*), +2aQ:(UX), + TLUF). (57¢)
My, = (m? =20D)(UX). +20,0,(UF)., +20,b(U?). (57d)
My = 20,0 (UX), + (0 =200)(UF). =20.h(U}¥), (57¢)
T T . .
My = Qi (UM 4+ Q| (UR),+2Q°(UY).. (571)

Integration is, as in (10) and (13), along the entire Im (Q)-axis and positive Im (Q ,)-axis.
At this point. the forms (19) and (31) are introduced, and formal integration yickds

'(n+l)! . ¢

e 58
pnbé .__.'!*(I__F,Q-):s_ ( }

U* = (U*), = 2ne

Again, it is uscful to make the imaginary nature of @, in (56) explicit by writing @, = iu
{u real), but we now change the @, -integrations onto paths in the cut @ -plane along which
the exponential terms assume the form ¢ ™, where ¢ is real and positive. These are, of
course, the Cagniard-deHoop contours (deHoop, 1960) given by

POy = ~rrtiv, J( = Fpiye 2 Ip). pPQ, = —vrxix J@T=Mp)(e = Mp)  (59)
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for the (M. My)-terms, respectively. where (/, M) are given by (21b) while p = |x|. The
two contours are branches of hyperbolae in the left half of the @ -plane. with Re (Q,)-axis
intercepts at Q, = (~Ir'p. — Mr'p). respectively. It is noted that neither intercept lies on
the branch cuts of its corresponding integrand. For x. = 0. of course. these contours
collapse into the paths used in obtaining (22). The inverse of the p-terms can now be
obtained by inspection, cf. (24), as

T )" His—t) (60)

whereupon. from (56) and (59) it is easy to show that

. ¥ Jeipi-n 1
mn'u=ch,J‘ (s—r)""lmf 1m"’ , ﬁu‘ 4
N N \,/(l"—['p') (l—("Q')'*'
\ St gt omd) d
'*'('Z(',J1 (.\‘—l’)"Ll lm.[ fT—fB]EL e ‘,,li:“_:dl.. (61)
"y 0 G =dEp )y (L =@yt

The (+)-sign is chosen in (59) and, from (57).
. T , o
m, =12Qiu4,—Q, . e —2dy, —2aQya, + Ty, (62a)
[¢
my, = (=200, +20Q ha. (™ 420 )ap. Q) / ad, +2(Q7+ua, | (62b)
1

An alternative form more closely related to those derived previously for x, = 0 can be
obtained by introducing the integration variables (w, z), where w = p/r and, for the (m,.
my)-terms, = = (1/1, 1/M), respectively. The result is

N

-

'
. ) =
e =ty eptt! f
]

Im f Fom,, dwd:z

)

L.m P
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for x, > 0, where (x, i, n) are defined by (29),

(3 — :)n v ",ll _
S ; —- 7z = pow (64d)
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(Z-—c" W,y - \/(:' —w")
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WPy e
{mg): = — ey, = IW g W a,. (65d)
v {ET—w)

In (63)-(63)

—wd)

Bo=ir+x, -, Po= =207+ (pw) (2=N). Py= =2U7+(puw)"N. (66)

N

Despite their formidable appearance, the w-integrations in (63) can be performed. In
particular. the highly-singular (F . F)-terms can be treated in the same manner indicated
by (33). However, like their counterparts defined in (30) and (39), the present forms are
more convenient.

In both (61) and (63). the partial uncoupling of the crack surtace relative displacements
previously noted for the x, = 0 tractions (s also evident: in particular, the tangential (0)
component, which represents relative slip in torsion, affects only the tangential displacement
for all x, > 0. Morcover. the dilatational and rotational wave components are clearly those
terms with, respectively. subscripts o and 8.

To conclude this analysis, we now examine some fracture mechanics aspects in terms
of the uniform traction case sofution outlined earlier.

8 FRACTURE MECHANICS ASPECTS FOR UNIFORM TRACTION CASE

From a fracture mechanics viewpoint, the tractions generated just ahead of the crack
edge (v, = 0.r = v+ ) are of particular interest, Returning now to {33) and (37), we find
in view of (30) that for v = 0, v < r < s'mic < & < 1/m) the singularity at 2 = ¢ now lics
oft of the integrand branch cuts Im(2) = 0, & < [Re(2)] < (1, 1/mr). This singularity is of
order 2, and we note that (30) and (39) give

Qen() wQeif-G] e

for Im (2) = 07, |Re (2)] < &, These observations, along with the convenient torm of (49),
suggest that for vy =0, ¢ < & < L'm we can write

LTI Y

’

> ¢ N w [ d- n R N
ey, = —/luml,.(. Im I, At “(5 :3(:1_(.5) T oy 0, . (68a)
. ¢ (- z z dz
dama, = —ud,, . (ImJ [A.,,‘P”(_-) +AQQ”(')] R
s " N S s —-c7)
1 : : A\
- f '| [1@0, (‘\) + Ry \/[I - (‘) ]D (68b)
2 ¢ & :

where a4, follows from (68b) by changing d, L0 a4y and the sign of the K-subscripted terms.
In (68)

it

R = 2(-?[] + S.}. R'P = T,( -+ L{ﬂ'. R{; = T,i + ?‘[’ (()9)

where ¢ replaces 2 in the definitions (29). The non-integral terms in (68) arise to account
for the pole residues at - = ¢ now appearing in the integrands. With this effect extracted,
the formal c-differentiation can take place. and the integrals in (68) are now identical in
form to thosc in (49). Thus, in view of (52). (54) and (48). (68) becomes



Penny-shaped cruck growth under combined loading 529

| 1 ¢} R N
- y TT e T B = 70
b;a‘ t+ 2¢d, f‘('[!("‘ol(c‘)j] (70a)

h. h +;(<D~u i\ e ﬂ:\a N

for x, = 0. ¢v < r < s'm. Here a,, follows from (70b) by replacing 5, with b,. and by
changing the sign of R,. For r = ¢s+. these forms give. upon differentiation. use of (30)
and keeping only the singutar terms. the results

2
i

¢ K,
R G ~ —;-"fl' —. Oy~ - (7hH
Ve n)\’(r—(\) V2rtr—es) x)\f{r—u)

Gz ~

where (K. K- K3 are, respectively, the mode (1. 11, TID) dynamic stress intensity factors
given by

(m s) . \/(ms) . Ve
_ = N .y 7
(b,< Rh.. K. s ﬁ Rb.. K ‘D: m b {7

K; =
and (2, ff. R) are now functions of ¢. At this point, we note that R is the Rayleigh function
with zeroes at + ¢, Thus (72) confirms the well-known (Broberg. 1960 ; Brock, 1977) results
that a growing crack loses its stress singularity in modes T and 11 at the Rayleigh wave
speed, while the mode T singularity vanishes at the shear wave speed (¢ = T > o).

Another quantity of interest is £, the rate per unit length of cruck edge at which
energy is produced by the growth of the penny-shaped crack :

Eo= f{c;-a-{;;a.-f. (73)

drnes

Here integration is over that arca of the r-plane containing the crack, while the tractions
are for the complete solution, and are evaluated on this plane. By following the work of
Achenbach (1970), (73) can be evaluated as follows: from {70} and (71) we note that the
total stress ficld vanishes on the crack surface, but is square-root singularatr = ey +. Then,
from (35) and (54). we see that U is square-root singular at r = oy —, L.,

, m t | 3 |
U~ - b,. . -by, = -b - T 74
e (: ™ 20, ) \/ () Jes=n) e

while, of course, vanishing for » > es. This combination of singularitics has the effect of a
Dirac function at r = ¢x. It sifting property can, therefore, be used in view of (71) and (74)
to show that

nm” .
= S Js(e bl +enbi +ehi) (73)
where the coeflicients
4R 4m- [5 R 76)
¢, = c:(l’gﬂ' Cp = (D’ « = C:(DEI

are dimensionless constants, and {x. f. R) are again functions of .
As could be discerned from the general result (20), and is confirmed by (534) and (71),
the problem axisymmetry uncouples the solution in such a manner that the three loading
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Fig. 2. Ratios of fracture mode contributions to fracture energy rate vs non-dimensionahized crack
speed.

traction components are associated one-to-one with the corresponding fracture modes. In
(75). therefore, one can examing the relative importance of the fracture modes to the energy
rate in terms of the dimensionless ratios

Ar‘ = . /\.rH = . k,,l = . (77)

In Fig. 2 we plot these ratios vs ¢ < ¢ Tor two values of mr, and see that (k.. k,,) are less
thun unity for low (¢ ~ 0) crack speeds, but eventually increase rapidly with speed. The
ratio &, . however, exceeds unity for ¢ ~ 0, then deereases with speed. Thus, forh, = b, = b,
the mode HH contribution to £, exceeds that due to mode I at low crack speeds, and the
mode [ effect, in turn, exceeds that of mode HI. This tendency changes, however, with crack
speed and, at high speeds (¢ ~ ¢,). the mode [11 contribution dominates, and mode I has
a stronger effect than mode [ Thus, even in an idealized problem, the relative importance
of the three fracture modes in the energy of crack growth is sensitive to crack speed.

Y. DISCUSSION

This paper presented un exact analysis of penny-shaped crack growth at constant speed
under combined tension/in-plane shear/torsion loading. In keeping with the crack geometry,
the loading variation was axisymmetric with respect to the crack center. By assuming that
the loadings could be represented as polynomials in the crack plane spatial coordinates, the
problem could, by superposition, be reduced to a series of problems with differing degrees
of homogencity in the spatial variables and time,

These problems were put into forms which were convenient for study., and which
emphasized their baste similarity with 21D problems of plane crack growth solved exactly
by Brock (1978). Thus. trial functions which required only the determination of arbitrary
constant coeflicient vectors were immediately identificd. Nevertheless, Cauchy theorem-
based manipulations of the resulting crack plane tractions were required to show that the
functions indeed gave the appropriate polynomial forms on the crack itsclf.

The trial forms had the advantage that they were simple, that the correct singular
behavior at the crack edge could be maintained by only one coeflicient vector. and. above
all, that they exhibited the same number of unknown cocflicients as that needed to define
a polynomial homogencous to a given degree. This resulted in a set of lincar algebraic
cquations for the unknown coefficients. One possible goal of future rescarch might be,
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therefore, to seek alternative trial forms which would lead to a strongly banded. or even
diagonal. matrix for these equations.

Two specitic cases-—varying pure tension and unitorm tension in-plane shear torsion —
were worked out in some detail. in order to illustrate completion of the solution process.
The latter case was also studied in terms of fracture mechanics, and the relative contributions
ol the three fracture modes to the fracture energy rate were found to be dependent on crack
growth rate. This implies that the nature of rapid 3D crack growth under mixed-mode
loading may be influenced by how fast the process occurs as well as by the loading applied.

General expressions for the displacements of a given degree of homogeneity throughout
one halt-space bounded by the crack plane were also given. Their forms showed an uncoup-
ling effect also apparent in the cruck plane tractions: the torstonal mode of crack surface
slip affects only the tangential displacement. This is. of course, an immediate consequence
of the axisymmetric loading variation and the crack geometry. Indeed. it could be argued
that the solution process would have been much more efficient had this axisymmetry been
invoked at the beginning. For example, the Hankel transform (Sneddon. 1972) is most
usetul in such cases.

However, it must be emphasized here, as at the outset. that the results presented are a
first-step extension ; it is hoped that the general approach taken here will be more adaptable
to transient 3D crack growth problems which exhibit neither axisymmetry nor lack of a
characteristic length,

T closing, it should also be noted that the exact 3D solution process for the idealized
transient problems presented here are not intended to supplant the numerical approximate
work currently being done in 31D dynamic crack studies. Clearly, the difliculty ol non-static
3D crack problems requires the use of accurate numerical formulations in many cases.
Nevertheless, it is hoped that the availability of exact transient 3D results for crack growth
will prove useful, especially as a source of limit-case results,
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